Paper / Subject Code: 81903 / Business Statistic#

			Tim	e: 2:30 ł	ours			Marks: 75
Note:	1) All Questions carry equa	al marks of 15 each	1.				Ÿ	
	2) Graph papers will be pro	ovided on request						
	3) Use of Non-Programma	ble Calculators is a	llowed.					
	4) Figures to the right indi-	ate full marks.						
	5) In Q no. 1 attempt both	the sub parts A ar	nd B.					
Q1a) F	ll in the blanks (any 8 out o	f 10)					8q x 1m =	8m
i.	The data collected for the data)	first time is knowr	i às			Secondary	data, Prima	ary Data, Raw
ii.	The middlemost observati			ribution	into two	equal part	ts is known	as
iii.	If the values of Arithmetic can be (33.3,4	Mean and Mediar	are 34.	5 and 34	1.1 respe	ctively, the	n the value	e of mode
iv.	The diagram used to get ro	ough idea about re				ables x and	y is known	as
v.	The Co-efficient of Correla					0 & 1, -1 & :	1, -1 & 0)	
				, decrea				
vi.	The Correlation Co-efficient	nt is	of	Regress	ion Co-e	fficients.		
		•		-			hted mear	
vii.	The method used to deriv			regress	ion equa	ition is know	wn as	·
	(Product moment, Least S			4 51				
viii.	There are compo					•		
ix.	Least Square Method is us			 ·		. 34		
v	(Non Linear Trend, Linear The variatio			anges in	a tima s	orios		
x.	(Seasonal, Cyclic-irregular		Sonai Cii	anges in	a time s			, <u>,</u> c
1b) Sta	te True or False for any Sev	en out of Ten.					70	q x 1m = 7m
i) T	he Histogram can be used t	o locate graphical	ly the va	lue of M	ledian.			
	he suitable measure of dis	•					-	
	If the value of co-efficient o							
	An occurrence of an outcor						e	
	he family Budget Method i						•	
	Future trend values can be							
vii)	If the two regression coef	ficients are negati	ve, then	the valu	ie of the	correlation	co-efficie	nt will be
·	positive.				. 			
	While calculating rank cor					e x are ran	ked in incre	easing order,
	then the values of variable If two variables x and y are			_		for a given	ualua af V	
			men i ca	iii be es	imateu	ior a given	value of A	usin <mark>g</mark> .
	Regression Equation of Y or Mean Deviation is a Relative		arcion					
	•							.= .
2a) Rep	resent the following data b	y a Subdivided Bai	r Diagrai	n				(7m)
				Year				
		Exports	1995	2000	2005			
		Food & Drinks	25	32	35			
		Raw Materials	18	20	30			
		Miscellangous	12	10	10			

59837

0

Page 1 of 3

Total

0281C74C6A947396FE1A36B322A24E3A

2b) Calculate Median for the following data and locate it graphically

				10	40 50
Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 – 50
		22	20	28	15
No of Students	18	22	30	20	

(OR)

2p) The Regional percentage of viewers for a popular TV Serial on DD Metro Channel for 3 months are as follows. Represent the following data by Multiple Bar Diagram.

1	Month	North	South	West	. East
	April, 2012	40	45	32	25
Ì	May, 2012	50	55	40	30
	June, 2012	45	49	38	38

2q) Calculate Arithmetic Mean and Mode from the following data.

(8m)

(8m)

diace / ii reiii ·					140 145	145 – 150
Height	120 - 125	125 - 130	130 - 135	135 - 140	140 - 145	7
No of Children	7	10	18	25	13	

3a) Calculate Mean Deviation from Mean and its Co-efficient for the following data.

(8m)

	70 72	22 24	24 - 26	26 - 28	28 - 30	30 - 32	32 – 34
Age	20 - 22			140	130	80	80
No of Employees	70	90	110	140	130	00	

3b) Calculate Correlation Co-efficient for the following data.

(7m)

х	17	8	12	13	10	12
У	13	7	10	11	8	9

(OR)

3p) Find Standard Deviation and Co-efficient of Variation for the following data.

(8m)

. Laterday	0 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 – 50
Marks	16	28	42	30	18	14
No of Students	10	20				

3q) Calculate Regression Equation of y on x for the following data. Also Estimate y when x = 70.

(7m)

\ \ \	T 54	65	75	82	57	59	60	64	58	62
y	58	67	76	80	60	64	65	65	60	70

4a) Calculate Fishers Index Number for the following data. Also construct Cost of Living Index Number using Aggregate Expenditure Method. (8m

	Bas	e Year	Current Year		
Commodities	Price	Quantity	Price	Quantity	
Rice	4	15	5	20	
Pulses	8	20	12	30	
Sugar	6	25	8	20	
Oil	6	3	8	4	
Milk	14	2	20	3	

59837

Page 2 of 3

4b) Calculate Five Yearly Moving Averages and represent it graphically.

(7m)

Year	2000	2001	2002	2003	`2004	2005	2006	2007	2008	2009	2010
Exports	51	53	50	57	60	55	59	62	68	70	72

(OR)

4p) Calculate Chain Base Index Numbers for the following data.

(7m)

Year	2000	2001	2002	2003	2004
Prices	15	18	25	32	. 40

4q) Fit a Straight Line Trend for the following Time Series and represent it graphically.

(8m)

Year	2010	2011	2012-	2013	2014	2015	2016	.2017
Imports	87	90	92	·98 ·	105	93	- 100	110

5a) For the following probability distribution, obtain i) P(X > 2) ii) $P(X \le 1)$ iii) P(X = 2 or 3)

(7m)

		1-1
iv) E(X)	v) V(X)	
		V

Х	-2	-1	0	1	2	3
P(x)	0.1	0.2	0.2	0.3	0.15	0.05

5b) For the following Payoff table, find the optimal decision using Laplace Criterion and Minimax Regret Criterion

(8m)

Course of	States of Nature			
Action	S1	S2	S3	
A1	100	150	190	
A2	350	200	0	
А3	-50	160	400	

(OR).

5p) Write short notes on any three out of five.

 $(3q \times 5m = 15m)$

- i. Components of Decision Making
- ii. Sources of collection of Primary Data
- iii. State the Additive Law of Probability. How will the statement of the theorem be modified if the two events are Mutually Exclusive and Complimentary Events
- iv. Components of Time Series
- v. Distinguish between: Qualitative & Quantitative Data; Class Limits & Class Boundaries

59837

Page 3 of 3